Differences of generalized composition operators between Bloch type spaces
نویسندگان
چکیده
منابع مشابه
Differences of Generalized Composition Operators between Bloch Type Spaces
Let φ and ψ be analytic self-maps of the open unit disk D . Using pseudo-hyperbolic distance ρ(φ ,ψ) , we characterize the boundedness and compactness of the differences of generalized composition operators (C φ −Ch ψ ) f (z) = ∫ z 0 [ f ′(φ(ξ ))g(ξ )− f ′(ψ(ξ ))h(ξ )]dξ , z ∈ D between two Bloch-type spaces on D . The results generalize the corresponding results on the single generalized compo...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملGeneralized composition operators from logarithmic Bloch type spaces to Q_K type spaces
In this paper boundedness and compactness of generalized composition oper-ators from logarithmic Bloch type spaces to Q_K type spaces are investigated.
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملgeneralized composition operators from logarithmic bloch type spaces to q_k type spaces
in this paper boundedness and compactness of generalized composition oper-ators from logarithmic bloch type spaces to q_k type spaces are investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2014
ISSN: 1331-4343
DOI: 10.7153/mia-17-71